Using the inter nal ladder analysis codes to handle networ ks that are not
predefined into the system.

Each step in the analysis of a network must be workethadvance and specified to the
program by the connection codes following the part viluke same format previously described
in chapter 5 for the predefined networks. These MUSTidertied using a text editor directly in the
"dzn" file. These codes call the same internal funstiohthe PCFILT analysis module as the
predefined network connection codes do internally.

The circuit editor will display the value of each parhe circuit editor may be used to change
the values of true parts but the "Insert” utility céae'tused to insert this type of codes.

A network is built up by the manipulation of several "ségis". Data representing each part
in the network is first read into the "holding registérhis register is symbolized by the pound
symbol "#". A "stack" of registers is used to hold intedmte calculations or data. These registers
are symbolized as "Stk". The final results of theyamls built up in the"Summation register” as the
analysis proceeds through the "dzn" file. The summaégister is symbolized by the Greek letter
Sigma "

Thefollowing isa detailed description of each code, itsfunction, and an example
of itsuse:
==== Thefollowing codes use the data associated directly with them ====

| # —Push—> Stk (92) ** Store data in stack **

Any partthatis to become the beginning element of afloating branch. This
codetellsthe computerto push the part associated with itinto the stack bottom
register to hold it for future use. This code may b e repeated up to 9 times in
a row pushing each previous value up the stack. Tha tisto say: the stack rises.

5.00000000e+01 R 92
(50 ohm resistor stored as a floating branch for la ter use)
| # —Par —> Stk (93) ** Parallel data into stack **
Any part to be connected in parallel with the float ing branch in the stack

bottom register (stack does not move).
6.80000000e-06 L 93

(6.8 uH inductor in parallel with stack bottom regi ster)
| # —Ser —> Stk (94) ** Series data into stack **
Any part connected series into the stack bottom reg ister.

(stack does not move)
9.10000000e-11 C 94
(91 pF Cap. in series with stack bottom register)

==== These codes manipulate the data in the stack ====
The "Part value" field in the file is ignored and mayzbeo.
The "ID type" field can be the vertical line characié or space “".

| Stk —Par—> = (95) ** Parallel stack into summation **
Tells the computer to connect the entire floating b ranch in the stack
bottom register in Parallel with the main Summation register.

(the stack drops)
0.00000000e+00 | 95

| Stk —Ser—> = (96) ** Series stack into summation **
Seriesconnectthe entirefloatingbranchinthe st ack bottomregisterinto
the main Summation register.
(the stack drops)
0.00000000e+00 | 96

| # —Par——> = (90) ** Parallel data into summation **
Any part to be connected in Series to the Summation register after the pop
| Stk+1 —># (98) code.

2.50000000e-12 C 90
(2.5 pF Cap. in Parallel)

| # —Ser——> = (91) ** Series data into summation **
Any part connected from the Summation register to g round after the pop
| Stk+1 ——> #(98) code.

2.000000000e-8 L 91
(20 nH inductor to ground)

| Stk+1 —>#(98) ** Recall stack register 1 into hold regist er **
This code tells the program to take the information at 2nd stack register
(1) and do with it what is specified by the NEXT co de. The stack does NOT drop
into the bottom register as usual but into register 1 from where the data was
removed. The bottom register is register 0.
0.00000000e+00 | 98 (This is a trick to exchange the data in
0.00000000e+00 | 92 the bottom of the stack with the data in
the stack register 1 just above it.)
NOTE: Only codes (90) through (94) may be used tot ell the program what to
do with the data popped from stack register 1. Neve r follow (98) with code (95)
or (96)!
For example, to connect the data from data stack re gister 1in series with
the Summation register:
Do this:

Stk+1 —> # | 0.00000000e+00 | 98
—Ser—> » | 0.00000000e+00 | 91
Data moves from the stack register 1 to the holding register (#), then it
is connected in series into the Summation register.

NOT this:
Stk+1 —> # | 0.00000000e+00 | 98
Stk —Ser—> » | 0.00000000e+00 | 96
Doing this will result in a "Code 98 error" message after the first
frequency point is analyzed! The data moved to the holding register from the
stack would be lost.

D->Y in Stk (97) ** Delta to Y transformation **
Y->Din Stk (100) ** Y to Delta transformation **

These codes causes a "delta” To "Y" or “Y” to “delt a” transformation to
be done to the parts or data previously stored in t he bottom three registers
of the stack.

See figure 1 (stack does not move)

2.02642366e-08 L 92 L z z
2.50000000e-10 C 92 | | |
2.50000000e-10C92 C C S

0.00000000e+00 | 97 | | |

Fig. 1 Location of data for D->Y or Y->D in Sack:
[2]
L

L) ——@1) —!| Stk2-firstin (3 @ in stack)
[0] ' [1] Stk 1-Secondin (2 nd in stack)

‘ Stk 0 - Last in (stack bottom)

Note: "in" makes reference to the order "Pushed":
2.02642366e-08 L 92 firstin [2]
2.50000000e-10 C 92 secondin [1]
2.50000000e-10 C 92 lastin [O]
0.00000000e+00 | 97

Stack - R X 41 Stk 9
(top)
Fig. 2 Internal working of the stack: - R jX 41 Stk 3
- R jX 1 Stk2 < —
—Stk+1 (98) . D->Y in Stk (97)
< out R jX 4 Stk1 D-Y
done
in —>+ RjX 4 Stk0 < here.
—Push—> Stk (92) | (Bottom)
—Par—> Stk (93) out
—Ser —> Stk (94) Stk —Par—> 3 (95)
Stk —Ser—> 3 (96)
data from file # > b
> RjX - >t RjX -
—Par——> 3 (90)
#Holding # —Ser—> 3 (91) % Summation
Register Register

kkhkkkkhkkkhkkkk*kx EX&mp'eS**************

Below is a sample file showing two identical 2nd ordepass group delay equalizers. The
first uses the predefined code 10. The second uses thmalrgelder network codes to define the
same equalizer network.

0 — Termination 50 Ohms 5.00000000e+01 R1
2.02642366e-08 L 10
1. L C 20.264 nHy. 250 pFd. 2.50000000e-10 C 10
4 —L —C -) —| 312.5nHy. 8.2393 pFd. 2.50000000e-10 C 10
3 C 250 pFd. 3.12500000e -07L 10
8.23926458e-12 C 10
6 # —Push—> Stk L 20.264 nHy. 2.0264 2366e-08 L 92
7 # —Push—> Stk C 250 pFd. 2.5000 0000e-10 C 92
8 # —Push—> Stk C 250 pFd. 2.5000 0000e-10 C 92
9 D->Y in Stk | 0.00000000e+00 | 97
10 Stk+l —># | 0.000000 00e+00 | 98
11 # —Ser—> 3 | 0.00000000e +00 | 91
12 # —Ser—> Stk L 312.5 nHy. 3.1250 0000e-07 L 94
13 # —Ser—> Stk C 8.2393 pFd. 8.2392 6458e-12 C 94
14 Stk —Par—> 3 | 0.00000000e +00 | 95
15 Stk —Ser—> 3 | 0.00000000e +00 | 96
16 Source ——! 50 Ohms 5.00000000e+01 R1

17 Fc =100 MHz. 1.00000000e+08 x 0

This example is of a notch network that has no preeftode:

L1
[
[L3 —C4 — L5 —C6 _
R
cioL11

||
0 — Termination — 1000 Ohms 1.00000000e+03 R1
1 # —Push—> Stk L~ 1007.3 nHy. 1.0073 0980e-06 L 92
2 # —Par—> Stk C 1.0073 pFd. 1.0073 0980e-12 C 93
3 # —Push—> Stk L 2014.6 nHy. 2.0146 1950e-06 L 92
4 # —Ser—> Stk C 0.50365 pFd. 5.0365 4882e-13 C 94
5 # —Push—> Stk L 2014.6 nHy. 2.0146 1950e-06 L 92
6 # —Ser—> Stk C 0.50365 pFd. 5.0365 4882e-13 C 94
7 D->Y in Stk | 0.00000000e+00 | 97
8 # —Push—> Stk L 10000 nHy. 1.0000 0000e-05 L 92
9 # —Ser—> Stk C 0.10147 pFd. 1.0146 7000e-13 C 94
10 | # —Par—>Stk C 4.0292 pFd. 4.0292 3912e-12 C 93
11 | #—Par—>Stk L 251.83 nHy. 2.5182 7440e-07 L 93
12 Stktl —># | 0.00000 000e+00 | 98
13 | # —Ser—> Stk | 0.0000 0000e+00 | 94
14 Stktl —># | 0.00000 000e+00 | 98
15 | # —Ser—> 3 | 0.00000000e +00] 91
16 Stk —Par—> 3 | 0.00000000e +00 | 95
17 Stk —Ser—> 3 | 0.00000000e +00 | 96
18 Source —! 1000 Ohms 1.00000000e+03 R1
19 Fc =158 MHz. 1.58000000e+08 x 1

xx%x% Using the circuit editor with the specially coded networks **

Networks using these codes have not been completelynmapted into all functions of the
circuit editor. You can change values, do impedance aoddrey scaling. You can insert Q
exception branches on any branch that specifies aglag. You can NOT insert any other type of
branch within them but it is ok to join them with etlpredefined networks. A network coded this
way should be considered as a single entity. You canatiate multiplexer ports containing them.

