G.1
APPENDIX G

DEFINITIONS AND USEFUL RELATIONSHIPS
G.1 POPULAR FILTER FUNCTIONS
A) Butterworth filters
These are the earliest known filter types and the least efficient. Their passband loss is maximally
flat, their stopband loss is monotonic (i.e., all the transmission zeros are at extreme frequencies).
Fig. G.1 shows the basic low-, high- and band-pass loss characteristics. One can use the

following expressions to solve for the degrees needed to meet your requirements:

amin/ 1 O amax/ 1 O

A=(10 - 1)/(10 -1) (G.1)
and
n > (log A)/(2 log Q) (G.2)
where U fee/fs for lowpass
[
Q= O fa/fas for highpass (G.3)
[

D min [(stz - fAfB)/(st(fB - fA)), (fAfB - fAsz)/(fAs(fB - fA))] fOI' bandpass

and am.x 1s the maximum allowable passband loss and ani, 1s the minimum required stopband loss;
fa (and fg) are the passband edge frequencies, while fxs (and fgs) are the stopband edge fre-
quencies.
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Fig. G.1 Butterworth filters

In the bandpass case, n must be doubled. The number of zeros at zero and at infinite frequencies
are equal in the bandpass case and this yields a bandpass filter that is symmetrical on a
logarithmic frequency scale. If arithmetic symmetry is required, one can obtain better results by
selecting:

Nnoo =3 1o
but then the filter is not strictly a Butterworth filter anymore and the above expressions will not
hold either.
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B) Chebyshev filters

These are filters with equal ripple type passband and monotonic stopband(s). Their
characteristics are shown in Fig. G.2 and the corresponding degrees are obtained from the
expression:

n>log[A"* + (A-1)"*]/log[Q, + (Q3-1)"] (G4)
where A and Q; are given by equations G.1 and G.3 respectively and » must again be doubled

for the bandpass case. Our comment about the symmetry of the Butterworth bandpass filters
applies to this case as well.
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Fig. G.2 Chebyshev filters
C) Inverse Chebysheyv filters

These filters are not as popular as the previous two since their realization is as complex as that of
the elliptic filters (see below), however, they are not as efficient. They have a maximally flat
passband and equal minima type stopband(s) (see Fig. G.3). Their degrees are calculated by
exactly the same expressions as those used for the Chebyshev filters.
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Fig. G.3 Inverse Chebysheyv filters
D) Elliptic filters
For uniform passband and stopband requirements, these filters provide the most efficient design.
Their passband is of the equal ripple type and the stopbands are of the equal minima type (see

Fig. G.4). The required degrees can be calculated from the approximate -- but very accurate --
expres- sion:
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n > F(B)*F(C) (G.5)
where
F(x) = (In(x + 2x° + 19x%))/1t
and
B=0.5[(Q"- D/(Q/"*+1)] (G.6)
C=[1+1/2A]16A (G.7)

A and Q, are defined as before. The value of » must be doubled again for bandpasses and if # is
even and ZS is not specified as -1, equation G.5 above may underestimate the value of n by one.
The program however, corrects for this effect.
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Fig. G.4 Elliptic filters

Occasionally, the loss values ami, and am. (hence also A) are specified, together with the degree n.
One can then approximately calculate the corresponding Q  through the following set of
expressions:
(Ttn/In C)
D=e

D' =D/(1 + 2D*) (G.8)
Q. =[(1+2D)/(1-2D"]

where C is given by equation G.7 above. Again if n is even and ZS is not equal to -1, this ex-
pression underestimates Q; slightly.

E) Bessel filters

These are lowpass filters with maximally flat delay in their passband and a loss that is approxi-
mately Gaussian (the loss is proportional to /n «Y). See also Fig. G.5. There is a semi-empirical

relationship between the delay at zero frequency T, and the 3 dB loss point fi4s given by:

2T, fias = [0.693(n-1)]"2 - 0.788/(6.5+n) (G.9)

However, this is valid only if all transmission zeros are at infinity. In any other case fii will
become lower than that obtained from the equation above.
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Fig. G.5 Bessel filters
F) Equal-ripple delay filters
One can also approximate the constant delay of a lowpass filter in the equal-ripple sense. This

uses an iterative procedure, because no closed form solution exists. The passband loss is mono-
tonic for low ripple values, but becomes more complex for larger values of the ripple.

The relationship between the degree n, the value of the ripple 7 in % and the delay T times the
ripple-bandwidth wy in rad/sec can be represented by the following empirical expression:

Towo = 1.47 1 - 2.94(1 - 1.62/n?) + [0.252 n /(1 +0.105 n )] logyo 7 (G.10)

G.2 OTHER USEFUL RELATIONSHIPS
A) Return loss

The return loss in dB of a filter terminated by a resistance R, is defined by:
Aret — 20 10g10 |(Rl + Zin)/(Rl - Zin)| (Gll)

where Zi, is the impedance looking into the filter from the termination. For lossless, doubly
terminated filters a, is directly related to the filter loss by the relationship:

/10 -a/10
10 +10 =1 (G.12)

Therefore, in the passband, the minimum return loss can be obtained from an. by solving
equation G.11 for it:
-amax/ 10
Aret min = - 10 10g10 [1 - 10 ] (G13)

If a return loss requirement exists in the passband, one can obtain the allowable anm. from this ex-
pression and this value will usually be more restrictive, than a passband ripple. Also, dissipative
effects will influence the return loss, but not very seriously. On the other hand, predistortion ruins
the return loss completely, therefore it should not be used if return loss requirements are
specified. The same is true if equal terminations are required in lowpass or highpass filters.
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B) Voltage Standing Wave Ratio

The voltage standing wave ratio (VSWR) in microwave filters is also related to the impedance
(Zin) and termination (R,) values through the expression:

VSWR =[[R; + Zi| + |Ri - Zi|]/[4 Ri(Re Zin)] (G.14)
If the VSWR is specified, the corresponding maximum passband loss value is given by:
amax = 10 logio [(1 + VSWR)*(4 VSWR)] (G.15)
C) Reflection coefficient
Another quantity which also describes the passband mismatch is the reflection coefficient, that is
related to the passband loss through the expression:
- Amax/ 10
p’=1-10 (G.16)
D) Mismatch loss
In the case of even degree lowpass and highpass filters with unequal terminations (ZS = 0), the

relationship between the ratio of terminating resistors and the loss (mismatch loss) at zero or
infinite frequency respectively, is given by the relationship:

ao =10 logo (r +2 + 1/r)/4 where r=R//R; or its inverse (G.17)
Conversely, if a, is given, then:
a0/20
r=[A+V(A*-1)] where A =10 (G.18)

This relationship can be used to introduce a flat loss into low- and high-pass filters. One simply
calculates the termination ratio from the required loss at zero (or infinite, for highpass filters)
frequency and specify that at the time the filter requirements are entered.

For bandpass filters, this method will not work, since unequal terminations can be accomodated
without any flat loss. We can, however, trick the program to let us enter a nonzero flat loss. We
do this by specifying sloping passband with a low, say 0.00001 db/octave, slope. The next
prompt will let us specify an additional flat loss. The disadvantage of this procedure is that we
can only use the SPECIFIED option and CONVENTIONAL type.

E) Definition of functions
For analog as opposed to digital or microwave, filters the independent variable is the complex

frequency:
s=0+jw
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where w = 217 'and we usually normalize this to fuom, Where foom is the (upper) passband edge
frequency (fs for low- and band-passes, fo for highpasses).

The transfer function is then defined as the ratio of the output response to input excitation:
H(s) = response/excitation = Q(s)/E(s) (G.19)
where E(s) and Q(s) are real polynomials in s and satisfy the following additional constraints:
* Q(s) is either pure even or pure odd,
* E(s) has zeros with negative real parts,
* degree of Q is not greater than the degree of E(s),
* |H()s=jw<1 (this condition may be removed for active or digital filters).

The zeros of Q(s) are called transmission zeros, while those of E(s) are the poles, also called nat-
ural modes, of the filter. Next we define the characteristic function K(s) by:

K(s) = F(s)/Q(s) (G.20)

where F(s) has as its only condition that it must be a real polynomial of s. The characteristic and
transfer functions are related through the expression:

H(s)H(-s) = 1/[1 + K(s)K(-s)] (G.21)
or substituting the polynomials:

E(s)E(-s) = F(s)F(-s) + Q(s)Q(-s) (G.22)

This is the polynomial form of the celebrated Feldtkeller's relationship (see equation G.12). Nor-
mally Q(s) is given. If, in addition, we specify F(s), then E(s) can be calculated uniquely from
equation G.18. If on the other hand, Q(s) and E(s) are given, F(s) is not specified uniquely. Be-
cause F(s)F(-s) is an even polynomial, it will either have double zeros on the jw axis, in which
case we allocate one of them to F(s) the other to F(-s), or it will have quadruplets of zeros. In this
case the left-half pair may be allocated to F(s), the other to F(-s) or vice versa. Since this is true
for each quadruplet, the higher the degree, the more different solutions exist.

In any case the polynomial F(s) will contain the reflection coefficient zeros at one end of the cir-
cuit, while F(-s) contains those at the other end. The reflection coefficient is defined, say, at the

input side as:

Pin = (Ri - Zin)/(R1 + Zin) = F(s)/E(s) (G.23)
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with a similar definition with F(-s) for the output side. The return loss is clearly the negative
logarithm of the magnitude of the reflection coefficient.

Finally, the normalized analog transformed frequency used in the case of digital or microwave
fil- ters is defined as (this is the normalized bilinear Z-transform in the digital case and the
Richard’s transformation in the microwave case):

S = tanh [s/2f]/tan[ Ttfom/f5] (G.24)

where S is the transformed frequency used to print the transfer function, and is to be used for
functional input. Furthermore, f; is either the sampling frequency for digital filters, or twice the
quarter-wave frequency for microwave ones, while f,m is the normalization frequency already
defined above.

G.3 INTERNAL COMPUTATIONS

The internal computations are done not in terms of the s variable; they are done in terms of a
transformed one in the bulk of the program. This helps to maintain numerical precision. Further-
more in the microwave segment, a two-step transformation is used because the familiar Richard's
transformation (equation G.24) is also needed.

In the digital segment we perform calculations directly in terms of the z variable. All frequencies
are always normalized to the (upper) passband edge frequency or, in the microwave case, to the
corresponding transformed frequency. In all cases, all polynomials are always represented in fac-
tored forms. In other words, we represent them by their roots and a multiplier instead of their
coefficients. This helps in understanding some of the debugging output that may be obtained
from the program if the need arises.

While the program is very large, in the multi-executable version, it is broken up into several seg-
ments, each one for a separate filter type:

* SFILSYN is the root segment that is used to start any. but FIR digital filters.

* PASSIVE is for the synthesis and analysis of passive LC/microwave filters.

* ACTIVE is for the synthesis and analysis of active RC and switched-capacitor filters.
* DIGITAL is for the synthesis and analysis of IR digital filters.

* FIR is a stand-alone program (does not need SFILSYN to start) for the synthesis and
analysis of FIR digital filters.

Alternatively, we have versions of the program, that have all of this in a single executable, just
like workstations and mainframe computers. This version needs at least 2 MByte of memory to
run in.
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All program segments run very fast, response is nearly always instantaneous. Waiting for results
may be encountered occasionally if one or more of the following situations are found:

* very high degree (over 25) filters (program limit is 50),
* predistortion,

* functional input,

* linear-phase lowpass with equal ripple delay.

On the personal computer, examples with the maximum 50th degree filters and functional input
(one of the most time consuming combinations) have been run with very satisfactory results and

reasonable running times.

Notes:
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